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The cosmic expansion history tests the dynamics of the global evolution of the universe and its
energy density contents, while the cosmic growth history tests the evolution of the inhomogeneous
part of the energy density. Precision comparison of the two histories can distinguish the nature of the
physics responsible for the accelerating cosmic expansion: an additional smooth component – dark
energy – or a modification of the gravitational field equations. With the aid of a new fitting formula
for linear perturbation growth accurate to 0.05-0.2%, we separate out the growth dependence on the
expansion history and introduce a new growth index parameter γ that quantifies the gravitational
modification.

I. INTRODUCTION

Acceleration of the cosmic expansion reveals funda-
mentally new physics missing from our picture of the
universe, yet key for the understanding of the recent and
present history and the fate of the universe. Further-
more, this new physics tells us that our standard models
of gravitation and particle physics may be woefully in-
complete. The acceleration may lead us to insights about
new high energy physics and the nature of the quantum
vacuum, or about gravitation beyond Einstein’s general
relativity. Perhaps most exciting would be a signal that
both are involved, providing clues to a theory of quantum
gravity.

The first scenario includes physical components such as
the cosmological constant, dynamical scalar field models,
or effective potentials from string theory. The second sce-
nario includes extensions of the Einstein-Hilbert action,
e.g. to higher derivative theories, scalar-tensor theories,
generalized functions of the Ricci scalar, theories of su-
pergravity or quantum gravity, and infrared modifica-
tions of gravity such as from hidden spacetime dimen-
sions. We can say that searching for the nature of the
accelerating expansion is seeking to answer one or the
other question: “Does nothing weigh something?” or “Is
nowhere somewhere?”

To distinguish the many different theoretical possibil-
ities requires accurate observations of the cosmic expan-
sion history, but even this will leave some degeneracies
between explanations. Models with different physical ori-
gins but the same global expansion properties could not
be separated. Fortunately, the overall smooth character-
istics of the universe are not the only observables. The
energy density contents have evolved from the hot, dense,
smooth state of the early universe to a relatively cool,
diffuse, and in the case of matter, clustered state. While
the first two properties are purely due to the expansion
of the zeroth order, homogeneous universe, being qual-
itatively kinematical, the last property arises from the
perturbed, inhomogeneous universe, being intrinsically
dynamical[1]. The growth of large scale structure in the
universe provides an important companion test, and the
cosmic expansion history and growth history together
provide discernment of the nature of the new accelerating

physics.
In §II we discuss the expansion history and the effective

equation of state entering the acceleration. The growth of
linear perturbations in the matter component in a gener-
alized cosmological model is reviewed in §III. The growth
equation is extended in §IV to allow other theories of
gravitation besides general relativity, and formal solu-
tions given. For practical use in constraining models by
observational data we introduce a highly accurate fitting
formula in §V and apply it to a braneworld gravity model
and models with coupling between the matter and dark
energy density. We present the conclusions in §VI.

II. EXPANSION HISTORY

The expansion history of the universe is a key quantity
in cosmology, appearing directly in the metric in the form
a(t). Kinematically, this is all that is needed to define
distances and volumes (together with the spatial curva-
ture constant k, which we take to be zero, though this
does not affect the form of the following discussion). To
evaluate the distances for a specific cosmology, dynam-
ics or equations of motion from the gravity theory are
required, together with information on the energy den-
sity contents. The expansion history, together with the
amount of clustering matter and any interactions of the
matter with other components, is the central ingredient
as well in the growth of matter perturbations.

The Friedmann expansion equation in terms of the
Hubble parameter H = ȧ/a is

H2 = (8πG/3)
∑

i

ρi, (1)

where we sum over all components of the energy density.
Since we are especially interested in the matter compo-
nent, e.g. since we are positive it exists and since we will
later examine its growth into large scale structure, it is
convenient to separate it out from the sum. Then in
terms of dimensionless energy density we can write

H2/H2
0 = Ωma−3 +

∑

i′

Ωi′e
3
∫

1

a
[1+wi′(a

′)]da′/a′

(2)

= Ωma−3 + δH2/H2
0 , (3)
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where the set i′ does not include matter, Ωm +
∑

i′ Ωi′ =
1, and w(a) is the equation of state of each component.

Without imposing any physical interpretation on δH2

as actually being due to an energy density component
as opposed to a modification of the Friedmann expan-
sion equation, we can define an effective “acceleration
physics” or “dark energy” equation of state [2] (cf. [3])

w(a) = −1 −
1

3

d ln δH2

d ln a
(4)

= −
1

3

d ln[Ωm(a)−1 − 1]

d ln a
, (5)

writing Ωm(a) = Ωma−3/(H/H0)
2.

Volumes and distances are built up out of the confor-
mal distance

η(a) =

∫ 1

a

(da′/a′)(a′H)−1 =

∫ z

0

dz′/H. (6)

Models with the same expansion history will have the
same distances and volumes. Note that formally we could
obtain the same expansion history for two models by
keeping their Ωm the same and matching their w(a), or
by allowing different Ωm and compensating for this in
w(a). Since the latter case corresponds to misestimating
the matter density rather than any new physics, we do
not consider it further.

While the definition of an effective equation of state in
terms of the expansion history is powerful, allowing dif-
ferent models to be talked about with a common language
and treated in a model independent parameter space, this
feature is also a bug. Measurements of the expansion
history, through distances and volumes to arbitrary pre-
cision, will not be able to distinguish different physical
origins for the same expansion behavior. This is where
the growth history comes in.

III. GROWTH OF MATTER DENSITY

PERTURBATIONS

The universe has not remained homogeneous on all
scales since its early, essentially smooth state. While the
largest volumes can still be treated as homogeneous and
isotropic Robertson-Walker universes, smaller scale evo-
lution must take into account perturbations to the metric
in the form of gravitational potentials.

Note that recent speculation [4, 5] about the interac-
tion of these potentials to affect significantly even the
global expansion seems misplaced; investigation of a re-
alistic inhomogeneous universe metric by Jacobs, Linder,
& Wagoner [6, 7] derived a Green function solution for
the potential. This “post-Newtonian” solution corrects
the Newton-Poisson equation and shows that no infrared
divergences exist in the potential, rather a suppression
as the Hubble scale is approached. The Appendix sum-
marizes the effects.

Using the perturbed equations of motion for the grav-
ity theory, one can derive the growth of density pertur-
bations. Concentrating on perturbations in the matter
density δ = δρm/ρm, assuming all other components are
smooth, within general relativity the time evolution is

δ̈ + 2Hδ̇ − 4πGρmδ = 0. (7)

The physical interpretation is very simple: the pertur-
bations grow according to a source term involving the
amount of matter able to cluster and are restricted by
a friction term, or Hubble drag, arising from the expan-
sion of the universe. General discussion of the physics
dependence on the expansion rate is in [2].

It is convenient to study the growth evolution in terms
of the expansion scale a or characteristic (e-fold) scale
ln a, rather than time t. Since the pure matter uni-
verse solution has δ ∼ a, it is also useful in studying
the dark energy to divide out this behavior and switch
to the growth variable g = δ/a. Finally, since we will be
interested in modifications of gravity, we hereafter nor-
malize G by Newton’s constant, i.e. where G appears in
equations it stands for G/GNewton.

Denoting derivatives with respect to ln a as primes, we
have:

g′′ +

[

4 +
1

2
(lnH2)′

]

g′

+

[

3 +
1

2
(lnH2)′ −

3

2
GΩm(a)

]

g = 0, (8)

g′′ + [3 − q]g′

+

[

2 − q −
3

2
GΩm(a)

]

g = 0, (9)

g′′ +

[

5

2
−

3

2
w(a)Ωw(a)

]

g′

+
3

2
[1 − w(a)]GΩw(a) g = 0, (10)

g′′ +

[

5

2
−

1

2
(ln Ωm(a))′

]

g′

+

[

3

2
−

1

2
(ln Ωm(a))′ −

3

2
GΩm(a)

]

g = 0. (11)

All these forms are equivalent. They clearly show that
the Hubble drag is increased, and hence growth is sup-
pressed, for an accelerating universe, as the deceleration
parameter q = −aä/ȧ2 or w become more negative. We
emphasize that they also demonstrate that within gen-
eral relativity the linear theory growth factor depends
purely on the expansion history, e.g. H(a) or w(a) or
Ωm(a) or Ωw(a) = 1−Ωm(a). So a discrepancy between
the growth observed and that predicted based on an ob-
served expansion history tests the theoretical framework
and can point up modifications to the theory of gravity.
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IV. GENERALIZATION TO GRAVITATIONAL

MODIFICATIONS

To study other theories of gravity we can consider
a change to the effective Newton’s constant G enter-
ing the above equations (remember the G in the equa-
tions really means G/GNewton), or more generally some
non-zero right hand side. First we examine this as a
generic change, and later treat a specific example within
braneworld gravity.

The deviation in G from its Newtonian value caused by
some time variation in G can be viewed as a subset of a
non-zero right hand side, since we may write a left hand
side source term XG(a) as the usual XGNewton and add
a term X [GNewton−G(a)] to the right hand side. Indeed,
any difference between two cosmological models that only
changes the source term, and keeps it linear in g, can be
viewed as transforming the solution of the homogeneous
differential equation for model 1 into a solution for model
2 of the effective inhomogeneous differential equation.

Using a Green function method one can obtain a formal
solution

g(ai, a) = ḡ(ai, a) +

∫ a

ai

du[Q̄(u) − Q(u)] g(ai, u)

× u5H(u)ḡ(u)ḡ(a)

∫ a

u

dv ḡ−2(v) v−5H−1(v) ,(12)

where Q is the source term1. The barred quantities rep-
resent some model 1 for which the solution is known (e.g.
general relativity), and the integral gives the particular
solution in the second model, for growth between any two
scale factors (we can set ai = 0 to get the total growth
up to some a).

The solution can also be written as a recursion relation

g(ai, a) = ḡ(ai, a) +

∫ a

ai

du ḡ(ai, u)

∞
∑

i=1

Ki(u, a)(13)

Ki+1(u, a) =

∫ a

u

dxK1(u, x)Ki(x, a) (14)

K1(u, a) = [Q̄(u) − Q(u)] u5H(u) ḡ(u)ḡ(a)

×

∫ a

u

dv ḡ−2(v) v−5H−1(v). (15)

This is particularly useful when considering small per-
turbations between models, e.g. when the gravitational
coupling is slowly changing, as in the case of some scalar-
tensor theories. (Retaining only the first order term, K1,
is basically a Born approximation.)

Another virtue of the Green function solution is the
ability to see broad physical trends as the models change.

1 Technically, Q is the source term divided by the growth vari-
able g, and also multiplied by a−2 since Eq. (12) uses a de-
pendent variable of a rather than ln a. For example Q =
[(3/2) − (1/2)(ln Ωm(a))′ − (3/2)GΩm(a)]a−2 in Eq. (11).

This follows the approach of [8, 9] who considered the
relation between distances as the cosmological model
changed, including an analogous change in the theoreti-
cal framework (there in terms of allowing a clumpy uni-
verse). Here we consider the relation between growth
factors. If Q̄ > Q then Ki > 0 and so g(ai, a) > ḡ(ai, a).
Thus we have a criterion for when the growth will be
stronger, or when it will be more suppressed. With the
expansion history fixed, the criterion Q̄ > Q simply be-
comes Ḡ < G; i.e. if the effective gravitational coupling
is stronger than Newton’s constant then the growth is
enhanced. For more elaborate modifications of gravity,
a non-zero right hand side to the growth equation can
contribute to Q as well, but the prescription above still
applies.

V. A NEW FITTING FORMULA FOR GROWTH

The general growth solutions of the previous section
are formal, and while we saw that they can present
generic physical insights they are somewhat cumbersome
for application to cosmological models. One might draw
an analogy to trying to map the expansion history. While
one can calculate the expansion history in a specific
model, say from a high energy physics scalar field po-
tential, this is inefficient for comparison of the observa-
tions to many possible models. Instead a useful approach
is a model independent one, using a parametrization of
the expansion history, for example in terms of the equa-
tion of state w(z) value and variation: w0 = w(z = 0)
and wa = (−dw/da)|z=1 (this is also similar to the infla-
tionary power spectrum index and tilt parameters). In
this section we derive an analogous model independent
parametrization of the growth history, putting it on equal
footing with the cosmic expansion history.

Rather than attempting to fit observations of growth
history with an effective equation of state wgrow(z), it is
better to render the physics appropriately: the expan-
sion effects on the growth are described in terms of the
standard expansion w(z), and the gravitational modifica-
tions giving deviations from the expected growth history
are treated as additional inputs. Again, in the standard
framework the expansion history completely determines
the growth history. Thus, we would like to write the
growth history g(a) as a function of an expansion history
quantity plus a new, framework testing characteristic.

Since the growth concerns matter density perturba-
tions we take the expansion history in terms of the mat-
ter density history Ωm(a). Two models with the same
Ωm(a) = Ωma−3/[H/H0]

2 for all redshifts will have the
same expansion history. So we look for a functional ex-
pression g(Ωm(a)). One that works superbly well, as
both a highly accurate approximation to the exact solu-
tion and as a simple characterization stimulating physical
intuition, is

g(a) = e

∫

a

0

d ln a [Ωm(a)γ−1]
. (16)
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Here γ is our new parameter for the growth history, called
the growth index, encompassing deviations in the theo-
retical framework. Models with identical expansion his-
tories but different gravitational theories will possess dif-
ferent γ parameters.

A. Accuracy Tests

First we establish the accuracy of the fitting formula,
Eq. (16), over a wide range of dark energy cosmologies.
Note that [10] (also see [11, 12]) has found that a similar
formula provides estimations of the normalized growth
factor at the accuracy level of about 1%. However that
approach normalized to the growth factor today (so it
could not predict its value, and [2] showed that g(z)/g(0)
varies by only a few percent innately between models)
and fixed the growth index. Furthering the pioneering
work of [10, 11, 12] we can remove both those restrictions
and obtain an order of magnitude better accuracy.

In terms of the expansion history dark energy equation
of state, within general relativity, we find excellent fits,
to better than 0.2%, using

γ = 0.55 + 0.05[1 + w(z = 1)]. (17)

Employing the value of the equation of state evaluated
at z = 1 allows simple treatment of dynamical models
where the equation of state varies with redshift, as it
generically does.

For the cosmological constant case, the fitting formulas
Eqs. (16) and (17) reproduce the exact growth history for
any redshift (including the total growth to the present)
to better than 0.05% over the range Ωm ∈ [0.22, 1]! It
remains accurate to better than 1% all the way down to
Ωm = 0.01.

Models with equation of state w = −0.8 (−0.5) have
accurately fit growth histories to within 0.2% (0.4%) for
Ωm ∈ [0.2, 1]. A dynamical model such as SUGRA with
w0 = −0.82, wa = 0.58 is fit to within 0.25%. Models
with equations of state w < −1 are similarly well approx-
imated. When w = −1.2 (−1.5), the fit is good to 0.3%
(0.5%). If we are willing to slightly modify the simplest
fit of Eq. (17) to

γ = 0.55 + 0.02[1 + w(z = 1)] for w < −1, (18)

for the phantom models w < −1, then we achieve an
astonishing 0.05% accuracy for these fits. (Note that
the fitting function of [13, 14], also containing a single
integral, is accurate to only 5% for models with w = −0.8
or −1.2 and Ωm = 0.3.)

While impressive in accuracy, the growth function fit-
ting formula’s primary purpose is not a fit as such (the
exact solution requires only solving a second order differ-
ential equation), but rather its usefulness in physical in-
tuition and in parametrizing modifications of the Einstein
growth equation beyond the expansion behavior (just as
w(z) parametrizes modifications of the Friedmann expan-
sion equation). The fitting function provides us access to

the acceleration physics that exists beyond what the ex-
pansion history sees.

B. Example: Braneworld Gravity

The growth of matter perturbations in gravitational
theories beyond general relativity is not well developed.
Here we consider one theory that has been shown to
be self-consistent [15, 16, 17, 18, 19], the DGP [15, 16]
braneworld theory of gravity. In this theory gravity has
infrared modifications due to spacetime possessing a large
extra dimension (making our view a 4D brane within a
5D bulk), causing a weakening of gravity on large scales
approaching the Hubble scale.

The expansion history for this braneworld theory fol-
lows from the modified Friedmann equation,

H2 − H/rc = (8π/3)ρ, (19)

where rc = H−1
0 /(1 − Ωm) is the crossover distance, re-

lated to the 5D Planck mass. Equivalently the expansion
history has an effective equation of state

w(a) = −[1 + Ωm(a)]−1, (20)

as noted elegantly by [17]. The braneworld expansion
history can be well approximated by a simple scalar field
model with w0 = −0.78, wa = 0.32. Indeed these two
very different physical origins for the acceleration agree
in distance measurements to within 0.5% (0.01 mag) out
to z = 2.

Information from the growth history, however, as
stated before can break this degeneracy in the nature
of the acceleration physics. Comparing the braneworld
model with a scalar field model with an identical expan-
sion history shows deviations in the present growth factor
of 7%. Figure 1 illustrates how the growth history de-
pends on both expansion history and the gravitational
framework. Taking into account only the expansion his-
tory in the growth equation, the braneworld and scalar
field models appear to have the same growth history.
However, proper treatment of the gravitational modifica-
tions inherent in the braneworld scenario separate these
models. This has been pointed out as well in [17, 20, 21].

In the linear power spectrum the deviation ranges from
4% at z = 2 to 15% today. While a scalar field model that
matched the modified growth of the braneworld model is
possible, it in turn can be distinguished through the ex-
pansion history. We see that expansion measurements
and growth measurements work in important comple-
mentarity to reveal the nature of the new physics.

Figure 2 demonstrates this synergy explicitly. Suppos-
ing the universe was described by a braneworld model
with Ωm = 0.28, distance measurements of the quality
of the proposed Supernova/Acceleration Probe (SNAP;
[22]) supernova data set, together with a 0.7% measure-
ment of the distance to the CMB last scattering sur-
face from Planck [23], would provide the constraints (at
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FIG. 1: The growth history is shown for an extra dimen-
sional braneworld model (long dashed, blue curve) and a
quintessence model with w0 = −0.78, wa = 0.32 (short
dashed, red), having nearly identical expansion histories.
When proper account is taken of the effects of altered gravity
on the braneworld growth history (solid, black curve) this al-
lows distinction of these models. The expansion history can
in turn rule out a quintessence model degenerate with the
solid curve.

68% confidence level, marginalizing over other parame-
ters such as Ωm) in the dark energy equation of state
parameter space shown by the ellipse. The best fit for
growth measurements would concur with the solution
using braneworld gravity equations, showing the consis-
tency of the data with this model. However, if the growth
equation employed general relativity, the best fit would
lie at the red star, w0 = −0.56, wa = 0, clearly inconsis-
tent. The comparison of expansion and growth histories
reveal a breakdown of the theoretical framework, this dis-
crepancy alerting us to a possible modification of gravity
(or experimental systematic errors).

Of course if the measurements were too coarse and
imprecise, we would not necessarily have noticed a sta-
tistically significant discrepancy. The braneworld model
expansion is compatible with an expansion history of a
constant w = −0.71 model, to 1% in distance out to
z = 1.7. So the expansion history measurements find a
“distance” in equation of state space of ∆w0 = 0.15 be-
tween the effective scalar field model from the expansion
history and that from the growth history. Conversely,
the expansion history of (w0, wa) = (−0.56, 0) can be
fit by (−0.63, 0.32), so the “distance” from the expan-
sion fit to the braneworld model of (−0.78, 0.32) is again
∆w0 = 0.15. This suggests that for a 3σ detection of
framework inconsistency we should strive for experiments

FIG. 2: Expansion history and growth history constraints on
the dark energy equation of state parameters can test the the-
oretical framework by looking for inconsistent results. The
blue cross gives the best fit for the expansion history of a
quintessence (Q) universe matching the braneworld (BW) sce-
nario, but the red star gives the best fit for the growth history
to a quintessence model, assuming general relativity. The
black ellipse shows the constraints at 68% confidence level
from next generation data composed of SNAP supernovae
data and Planck CMB last scattering distance measurement.

that provide an uncertainty of σ(w0) < 0.05.
Likewise one can estimate from the different orienta-

tions of the expansion history and growth history con-
straints in the w0 − wa plane that the precision of mea-
surements on wa should be σ(wa) < 0.2. This compari-
son of growth to expansion provides one of the only ways
of putting an absolute scale on the measurement pre-
cision that should be striven for in experiments to re-
veal the nature of the accelerating physics – a significant
breakthrough (see also [24]). This is somewhat damp-
ened by the realization that this scale is particular to the
braneworld scenario. Note that the relative precisions
between w0 and wa obey the relation

σ(w′) ≡ σ(wa)/2 ≈ 2σ(w0), (21)

found in [24, 25], though that analysis was within the
scalar field context. This relation signifies that a precise
measurement of w0 is of limited use without concomi-
tant constraint on wa, since a sufficiently different wa

can spoof w0. That is, the uncertainty in seeing a dis-
crepancy will be dominated by the largest error among
the two equation of state parameters.

To move beyond a mere alarm that there is an incon-
sistency, we need to employ the growth parametrization
of Eq. (16) to obtain a quantitative measure of the devia-
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tion from the growth behavior predicted by the expansion
history measurements. We find that the fitting formula
works for the braneworld scenario including gravitational
modifications, using a growth index γ = 0.68 (note that
the pioneering paper of [17] indicated the equivalent of
γ = 2/3). In fact, the growth history using the fitting
function Eq. (16) and γ = 0.68 matches the exact solu-
tion to within 0.2% (for Ωm ≥ 0.2).

The approximation of a single growth parameter be-
yond the expansion history effects on the growth can
be validated by asking what values of γ as a function
of redshift reproduce the exact solution. For the case
Ωm = 0.28, the (now) function γ(z) ranges between 0.665
at z = 0 to 0.683 at z = 1 to 0.687 at high redshift.
(The constancy of γ with redshift holds even better for
quintessence models.) This, as well as the excellent fit to
the growth function, justifies the use of a single parame-
ter γ, the growth index.

With this model independent parametrization in hand,
we can obtain quantitative measures of the deviations be-
tween models, even those that involve gravitational mod-
ifications. To the cosmological parameters Ωm, w0, and
wa, we add the growth index γ and can plot the resulting
parameter estimation uncertainties, marginalizing over
subsets of parameters. Figure 3 illustrates an example.

The growth index γ that would fit the braneworld
growth history is clearly distinct from the values allowed
by a scalar field model that matches the expansion his-
tory. The “distance” in γ is 0.11; to attain the value
γ = 0.68 would require, by extrapolation of Eq. (17),
w = +1.6! A 3σ distinction of the framework breaking
would need a measurement with precision σ(γ) = 0.037
(marginalized over the other parameters). This corre-
sponds roughly to a 2% measurement of the growth his-
tory. Indeed, this is in good agreement with the results of
Fig. 1, which showed growth deviations between the two
models with identical expansion histories at up to the 7%
level, so the same 3σ criterion leads to ∼ 2% precision.

C. Coupling of Matter and Dark Energy

While the primary purpose of the formalism here is to
test the gravitational framework, in the case of a physical
dark energy there can enter microphysical effects. These
can include spatial perturbations to the dark energy or
coupling to the matter component. We leave the first of
these to future work, but note that growth probes involv-
ing correlations of large scale structure with the CMB
might play a role (e.g. [26, 27, 28]). Here we consider
whether the fitting formula and growth index approach
remain valid in the presence of coupling. Without a mi-
crophysical theory these are necessarily toy models, and
we only consider the effects on matter growth, neglecting
early universe or fifth force constraints.

Interaction between matter and a dark energy compo-
nent is treated through a coupling of the evolution equa-

FIG. 3: While Fig. 2 showed that expansion history and
growth history constraints on the dark energy equation of
state parameters could test the theoretical framework by look-
ing for inconsistent results, here we see quantitative mea-
sures of framework breaking by gravitational modification of
the growth index γ. The red star gives the best fit for a
quintessence (Q) model matching the expansion history of the
braneworld (BW) scenario, but the blue cross gives the true
result for the braneworld growth history. The black ellipse
shows the constraints at 68% confidence level from next gen-
eration data composed of SNAP supernovae data and Planck
CMB last scattering distance measurement, marginalized over
the equation of state parameters w0, wa.

tions:

ρ̇i = −3H(1 + wi)ρi + Γi(a, ρm, ρde). (22)

We have considered the cases Γm = −Γde = αρm, αρde,
and αanH , the slinky inflation model [29], and the undu-
lant universe model [30]. Note the undulant universe is a
special case of the slinky model, without coupling, and is
ruled out by having a very low growth factor (g0 = 0.03).

All these models follow the growth index formalism if
the coupling is not too strong. As the coupling increases
(e.g. if the dimensionless coupling α′ = α/ρm(0) >∼ 0.5
in the Γm = αH case), this will start to break down
because the equation of state of matter begins to devi-
ate significantly from zero (plus in some cases the high
redshift universe is not matter dominated). As a simple
example, consider the decaying matter scenario where
Γm = −αρm. This was treated in detail in [31], and
the matter equation of state is α/(3H) [32]. Generi-
cally, a coupling of the form Γi = αρi will change the
equation of state of component i, defined by the effec-
tive conservation equation ρ̇i = −3H(1 + weff)ρi, from
wi to weff = wi −α/(3H) (providing a way for a w > −1
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component to look phantom, w < −1).
Further research into the effects of coupling on growth

of perturbations is underway [33] (also see [34]). Lack of
a consistent microphysical theory is the major obstacle.
For example, is the “new” energy density in a component
distributed uniformly or in the same spatial distribution
as the component it came from? Issues of evolution from
that point by clumping or free streaming make rigorous
calculation complicated.

VI. CONCLUSIONS

To reveal the physical origin of the acceleration of the
universe, both probes of the expansion history (such as
the distance-redshift relation) and of the growth history
(such as weak gravitational lensing measurements involv-
ing the mass power spectrum) are required. While the
two types of probes in synergy give enhanced constraints
on the effective dark energy equation of state, in compar-
ison they can test the theoretical framework of cosmology
and general relativity.

The growth history of mass in the universe follows
the source and friction term behaviors governed by the
expansion. Deviations from this reveal a breakdown of
the framework such as from modification of gravity. By
rendering the growth function in a physically appropri-
ate manner, separating the expansion effects from frame-
work extensions, we presented here a new, physically in-
tuitive and highly accurate (0.05-0.2%) fitting function,
Eq. (16), for the linear growth of perturbations in gener-
alized cosmologies. This allows model independent quan-
tification of gravitational modifications in terms of a new
parameter, the growth index γ.

This research suggests a new paradigm for understand-
ing the nature of the acceleration physics: accurate mea-
surement of expansion and growth separately, for exam-
ple through Type Ia supernovae and weak gravitational
lensing. A useful, model independent, quantitative pa-
rameter set was shown to be the equation of state value
w0 and variation wa and the growth index γ. In the
specific worked case of comparing an extra dimensional
braneworld scenario with scalar field physics in general
relativity, the desired measurement precisions should be
of order σ(w0) ≤ 0.05, σ(wa) ≤ 0.2, σ(γ) ≤ 0.04. These
should be technically feasible and should be within the
reach of next generation experiments such as the Joint
Dark Energy Mission.

The formalism presented here has further applications
for future investigation, such as seeing the effect of per-
turbations in a physical dark energy component, cou-
plings between dark energy and matter, and scalar-tensor
gravity. To reveal the nature of the new physics responsi-
ble for the universe-shaking acceleration, we will require
a comprehensive suite of cosmological probes. The sig-
nificance of the discoveries is so great that every robust
method is needed to strengthen the accuracy, and the
confidence in our understanding. With clear measure-

ments of the cosmic expansion history and the cosmic
growth history together we can learn if nothing weighs
something, if nowhere is somewhere, or even more unex-
pected insights.
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APPENDIX: INHOMOGENEITIES AND COSMIC

EXPANSION

We have taken the cosmic growth history to not “back
react” on the cosmic expansion history. That is, the
global homogeneous expansion independent of the growth
of matter structure is a valid treatment. This is a topic
of great interest and comment; here we simply present a
brief summary of the dependence of the metric on gravi-
tational potentials and the lack of large contributions by
gravitational potentials (in particular no infrared diver-
gence) to the cosmic expansion.

The approach taken by [6, 7] is a straightforward cal-
culation to obtain the metric of a realistically inhomo-
geneous universe. In particular, it did not rely on any
averaging procedure, rather a harmonic decomposition of
the perturbations. The second key aspect was no a pri-
ori assumption on the size of matter density fluctuations;
rather it used a post-Newtonian parametrization, essen-
tially a weak field, slow motion expansion. This followed
work of Futamase [35, 36, 37] and can be traced back to
the mean field theory, or two length scale, approach of
Chandrasekhar [38].

For potentials parametrized by an amplitude ǫ2 ≪ 1,
and characteristic length scale κ, the slow motion or,
more physically, the shear condition ǫ2/κ ≪ 1 applies.
Violation of this condition leads to ray crossing in light
propagation (see [7, 39]) and eventually relativistically
moving matter structures, contrary to observations of
our universe. Landau & Lifshitz [40] pointed out that
the dominant first order effect on the cosmic expansion
entered at what they called pseudotensor order: ǫ4/κ2.
Thus the shear condition ensures that the expansion
is insignificantly affected, and conversely a significant
back-reaction of inhomogeneities on the expansion would
generically lead to visible anisotropies.

However, here we concentrate on the post-Newtonian
gravitational potentials, and modification of the Newton-
Poisson equation relating the potentials to the matter
density distribution. The general solution obtained by
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[6, 7] was

φ(η, ~x) = −
4π

3

∫ η

η0

du

a′(u)

×

∫

d3~y a3(u) δρ(u, ~y)G(u, η, ~x, ~y), (A.1)

plus an initial condition term. The Green function is

G(u, η, ~x, ~y) = [a(u)/a(η)] [4πC(u, η)]−3/2

× e−|~y−~x|2/[4C(u,η)] (A.2)

C(u, η) = (1/3)

∫ η

u

dv (a/a′), (A.3)

where a prime denotes a derivative with respect to the
conformal time η.

These expressions show that there is no divergence of
the potential or its derivatives in the presence of inhomo-
geneities. In contrast, the post-Newtonian Green func-
tion solution, while matching the Newton-Poisson equa-
tion on small scales, shows an exponential suppression
of the potential as one approaches horizon scales. These
limits are treated in detail in [7], and the physical prob-
lem is shown to be closely analogous to the displacement
probability distribution for isotropic random walks, and
for diffusion in a uniform medium.
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